Draft: Zirbi Team Description Paper

Nils Mandischer Robert Jeutter Lukas Asam Daniel Gabler

Aleksander Michalak Sofia Ottl Jonas Platzer
Leonie Schmidt Peter Viechter = Meruna Yugarajah

October 21, 2025

Abstract. This paper is a preliminary draft.

1 Introduction

This year marks the formation of a new team from the University of Augsburg
participating in the RoboCup@Home competition. We work in collaboration
with Aracom, whose expertise supported the team throughout the development
process. Our team is comprised of Robert Jeutter from Aracom, Nils Mandischer
from UniA, and the eight students in the Autonomous Robotics course. While
the team is newly founded, it builds upon the technical expertise and academic
background of our institution, aiming to contribute innovative approaches to
robot perception, manipulation, and human-robot interaction.

For our first participation, we aim to establish a stable foundation for au-
tonomous service robotics research. This means that we are not aiming for im-
mediate top-level performance, but rather prioritize software architecture, main-
tainability, and usability. This foundation is intended to be further expanded
by future students to steadily increase the robot’s capabilities in the coming
semesters.

We intend to lay the groundwork for long-term success in RoboCup@Home,
both in terms of competition performance and in providing a valuable research
and teaching environment at the University of Augsburg.

2 Description of the hardware

All components of the robot are mounted on a mobile platform. This platform is
provided in collaboration with Aracom, whose robotic system forms the physical
basis for our developments. This cooperation allows us to focus our efforts on
building robust and flexible software components while leveraging reliable and
proven robotic hardware. For the object manipulation we are using the URb5

arm from Universal Robotics that is mounted on the robot base. As an end-
effector we are using a 2-finger gripper from Robotiq. In addition, the system is
equipped with a variety of sensors and computing units to support perception,
navigation, and human-robot interaction. This includes three NVIDIA Jetson
Orin Nano modules for onboard processing, a LIDAR and a RealSense camera
for environment sensing, as well as microphone, sonar, IMU, RTC, speaker, and
an OLED display to facilitate multimodal interaction and precise timing.

3 Software architecture overview

3.1 Safety Approach

Safety in robotic systems must be addressed at multiple levels, ranging from
local subsystem protection to global system-wide monitoring. In the proposed
architecture, safety responsibilities are split between local safety nodes and a
central monitoring node. Local safety nodes are embedded within each subsystem
(e.g., manipulation, navigation, perception) and provide immediate protection
against hazards specific to their domain, such as joint limit violations, sensor
malfunctions, or collision risks.

The central safety node aggregates these local reports, maintaining a holistic
view of system health. This is achieved through a cyclic publish—subscribe mech-
anism, where all safety-relevant modules periodically publish status updates.
The central node monitors these heartbeats, allowing for the rapid detection of
failures or communication breakdowns. This design enables both decentralized
reaction to local hazards and centralized enforcement of global safety policies,
ensuring scalability and resilience.

In the event of an anomaly, the central safety node evaluates the severity
and context. Minor issues may trigger predefined mitigation strategies, such as
slowing down movements or recalibrating sensors. Severe conditions (e.g., critical
hardware faults or loss of localization) may escalate into a system-wide freeze,
halting all robot activity to prevent accidents. This layered strategy balances
responsiveness with robustness, ensuring that the robot can continue operat-
ing under non-critical disturbances while still guaranteeing a safe shutdown in
emergencies.

3.2 Movement and Navigation

Movement and Navigation in a mobile service robot requires the integration of
mapping, localization, path planning and aware navigation. For a solid base to
develop on the navigation stack builds upon Nav2, a reliable and tested ROS2
library that provides tools for path planning, obstacle avoidance, and trajectory
execution.

For generating and updating maps the SLAM-toolbox is used, which en-
ables mapping of undiscovered areas, as well as localizing the robot in already

3. SOFTWARE ARCHITECTURE OVERVIEW 3

mapped out environments. Leg tracking based on LiDAR data [1] lets the robot
detect humans. A combination of this package and a computer vision model,
that’s trained on identifying different persons, shall enable the tracking of a se-
lected one. The logic in the background should couple the identified position of
a recognized human face to a pair of legs at roughly the same coordinates. This
individual can then be tracked, even when leaving the field of view of the rgb
camera, just by the above mentioned leg tracking algorithm. This shall provide
a natural robot-human interaction when following.

The central intelligence of the robot, the global decision making, sends com-
mands to a so-called movement orchestrator. These have a custom defined mes-
sage type ‘MovementAction’. It defines parameters like whether mapping and or
localization should be activated or not, or a destination, in case the robot should
move to a specific location. The orchestrator processes this request and forwards
it to the navigation manager, which is responsible for properly starting and stop-
ping the modules for localization, mapping and navigation/path-planning. When
an executable trajectory is calculated, the according velocity is communicated
to the omni-wheels hardware interfaces which translates into a physical motion.

After the task is concluded, the orchestrator provides feedback of success (or
failure) to the global decision making and logs the outcome in the knowledge
base.

3.3 Object Manipulation

Manipulation in a robotic system requires the seamless integration of kinematic
control, motion planning, and end-effector coordination. In this project, a Uni-
versal Robots URb arm serves as the primary object manipulator, offering a ver-
satile six-degree-of-freedom platform capable of executing both pick and place
tasks. The URb is augmented with a Robotiq adaptive gripper, which provides
robust and flexible gripping capabilities including a variation of the gripping
force. This enables the system to handle a wide range of objects with varying
shapes and surface properties.

The movement of the manipulator is coordinated through Movelt2, which
provides advanced capabilities for path planning, collision avoidance, and tra-
jectory optimization. This framework allows the manipulator to compute feasible
paths in real time and achieves modularity and interoperability of the system.

In this architecture, the global decision maker initiates a ManipulationAction
on the Orchestrator, specifying both the ManipulationCommand, which is the
task to be performed, and the identifier of the target object. To contextualize the
request, the Orchestrator queries the Knowledge Base for object metadata, in-
cluding semantic labels, bounding boxes, and point cloud representations. Once
the property of the object is retrieved, the Orchestrator invokes the Gripping
Force Service, which computes the required gripping force.

The Orchestrator subsequently transforms the object’s point cloud and bounding
box into the manipulator’s base coordinate frame, so the system has a consis-
tent reference frame for planning. From this representation, the gripping pose
is derived. Currently, the position is estimated from the point cloud, while the
orientation is inferred from the bounding box geometry.

The collective data is then sent to Movelt2 where one of the 6 jobs is called ac-
cording to the Orchestrator command. The manipulator is capable of executing
four fundamental tasks: Home, Move, Open, and Close, as well as two higher-
level tasks: Pick and Place. Invoking the Home task causes the manipulator to
move to a predefined home position, while the Move task directs it to a specific
pose provided by the orchestrator. The Open and Close tasks control the grip-
per, with the Close task additionally taking the gripping force into account. The
Pick task involves grasping an object at a designated gripping pose, whereas the
Place task executes the placement of an object at a specified placing location.
Finally, the Orchestrator reports the outcome, success or failure, back to the
Decision Making module and logs the outcome as a RobotStatusEvent in the
Knowledge Base.

This structured approach enables reliable and flexible manipulation, ensuring
that the robot can adapt to a variety of objects and tasks. By integrating per-
ception, planning, and execution in a modular framework, the system provides a
foundation for further enhancements in autonomy, efficiency, and safe operation
in complex, unstructured environments.

3.4 Speech Interaction

Speech is the main interface between a human operator and the robot.

To achieve natural and flexible voice interactions, we chose to employ a large
language model that is deployed locally on one of the Jetson nanos. As LLM
model, we use Qwen3-8b[2] that is executed by Ollama[3], a framework to build
and run all kinds of LLMs. Qwen3-8b fits our needs, as it is reasonably small,
supports reasoning, and has tool support.

This tool support allows us to define tools with parameters. These tools can
then be triggered by the LLM in the course of an interaction. The triggered
tool with its parameters is then validated and passed to the right subsystems
for execution. For example, an operator tells the robot to pick up the green
shopping bag. The LLM then triggers the pick up bag tool and inserts green
as the color parameter. After that, feedback is given to the operator containing
the subsystem status and potential errors.

For the speech-to-text input to the LLM we use a combination of silero-vad[4]
as voice activity detection and pywhispercpp|5] as speech-to-text converter. Since
this does not include any kind of wakeword detection (like "Hey Robot"), we
check any text input for relevance before it is passed to the main chat. This is
achieved by passing the text input to the LLM, but with the given task to just
return if the text is relevant to the robot or not.

The text-to-speech output is handled by Tortoise TTS[6].

3. SOFTWARE ARCHITECTURE OVERVIEW 5

All stages of the speech interaction pipeline stream their output where pos-
sible (text tokens, audio samples), to achieve a low latency between operator
request and an answer from the robot.

3.5 Knowledge-base

The Knowledge Base represents a central information hub within the robotic
system, designed to store, organize, and provide access to heterogeneous data
sources. It serves as the persistent memory of the system, enabling decision-
making modules, orchestrators, and subsystems to operate with up-to-date and
consistent information. All access is provided via multiple ROS services.

Entity Management The database supports entities: objects in the robot’s
environment such as people, furniture, or pickable items. Each entity contains
structured metadata including semantic labels, spatial coordinates (x,y,z), orien-
tation (quaternion), and object-specific properties. This enables the orchestrator
to retrieve geometric and semantic information for manipulation tasks.

Event Logging The system maintains a comprehensive event log of robot op-
erations, capturing timestamps, event types (Manipulation, Movement, Safety),
and contextual metadata. Compared to the normal ROS log, all event types and
attributes are fixed and not just message strings. This means the events can be
used by the main decision maker to adapt the robot’s behavior in real-time and
give feedback to human operators.

SLAM Map Integration The Knowledge Base supports persistent storage of
SLAM-generated maps. This makes it possible to map the robot’s surroundings
once, save the map, and then reuse the pre-mapped environment across sessions.

Technical Implementation Built with SQLAlchemy ORM|7] and PostgreSQL[8]
backend, the database provides robust relational storage. The system uses async
I/O with asyncpg[9] for PostgreSQL interactions, and all ROS 2 services are
wrapped in a ReentrantCallbackGroup to enable concurrent request processing,
ensuring low-latency access to the shared data model.

This architecture ensures a unified data model accessible via ROS 2 ser-
vices, reducing redundancy while maintaining synchronization between percep-
tion, decision-making, and execution subsystems.

3.6 Computer Vision and Perception

The perception subsystem forms the robot’s sensor interface and provides the
raw data from the currently deployed sensors system-wide. At present, an RGB
camera and a LiDAR are used; no explicit noise filtering of the data streams is

performed. The LiDAR data is used in real time by the Movement subsystem to
derive obstacles, free space, and local navigation cues, while the camera data is
fed to the Computer Vision module.

In the Computer Vision module, camera images are used for real-time ob-
ject detection and classification. For each detection, among other attributes, the
object name and a 3D pose with fixed orientation are derived. The resulting
information is stored as structured entities in the Knowledge Base, yielding a
consistent, queryable representation of the world state. For object detection, we
use YOLO-11n [10], as this model offers a convincing balance of accuracy and la-
tency on edge hardware, performs robustly in everyday, partially occluded scenes,
and scales within the YOLO family (from Nano to Large) without architectural
changes. Pretrained weights facilitate coverage of numerous object categories and
enable domain-specific fine-tuning. Overall, YOLO-11n meets our robot’s real-
time and versatility requirements while maintaining moderate resource demands
[10].

4 Conclusions and future work

In the future, we plan to extend the manipulation parts of the system in sev-
eral directions. First, all functions will be tested in a fully functional simulation
and on the hardware, to ensure robust performance under varying conditions.
Second, we aim to develop a placing point algorithm to realize precise object
placement. Finally, the perception pipeline will be integrated to enable real-time
collision avoidance, allowing the manipulator to operate safely and efficiently
in dynamic and cluttered environments. Together, these advancements will in-
crease the manipulator’s autonomy, adaptability, and applicability to real-world
scenarios.

The movement and navigation part has to harmonize it’s inputs for the leg
tracking function with computer vision. By this, and the combination with the
leg tracking algorithm and extensive testing a robust human tracking should be
made possible. Next to this, the hardware integration with the drivetrain and
finetuning of the safety features have to be executed.

On the perception side, we will explore the integration of additional sensors
to broaden coverage and improve robustness, and we will introduce principled
preprocessing of sensor data—such as filtering, outlier handling, and temporal
smoothing—to increase signal quality without altering the overall system archi-
tecture.

For computer vision, we plan to implement IoU-based tracking to maintain
persistent identities across frames and to update existing entries in the Knowl-
edge Base rather than re-adding them each frame. In addition, we will integrate
depth-image handling where available to strengthen 3D localization, scale esti-

4. CONCLUSIONS AND FUTURE WORK 7

mation, and occlusion reasoning, thereby improving downstream planning and

interaction.
References
1. Puru Rastogi and Atharva Pusalkar. ros2_leg detector.
https://github.com/mowito/ros2_leg_detector, 2021. Commit:

10.

b4be35a2{540c0e72cb8718e99fd9a23dc31501.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu,
Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren
Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng,
Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su,
Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui,
Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. arXiv
preprint arXiv:2505.09388, 2025.

Ollama. Ollama: Get up and running with large language models. https://
github.com/ollama/ollama, 2025.

Silero Team. Silero VAD: pre-trained enterprise-grade Voice Activity Detec-
tor (VAD), Number Detector and Language Classifier. https://github.com/
snakers4/silero-vad, 2024.

Abdeladim Sadiki. pywhispercpp: Python bindings for whisper.cpp . https://
github.com/absadiki/pywhispercpp, 2025.

James Betker. TorToiSe text-to-speech. https://github.com/neonbjb/
tortoise-tts, 2022.

Michael Bayer. Sqlalchemy. In Amy Brown and Greg Wilson, editors, The Archi-
tecture of Open Source Applications Volume II: Structure, Scale, and a Few More
Fearless Hacks. aosabook.org, 2012.

. The PostgreSQL Global Development Group. PostgreSQL: The World’s Most

Advanced Open Source Relational Database. https://www.postgresql.org, 2025.
The asyncpg authors and contributors. asyncpg: A fast PostgreSQL Database
Client Library for Python/asyncio. https://github.com/MagicStack/asyncpg,
2025.

Ultralytics. Yololl — ultralytics yolo documentation. https://docs.
ultralytics.com/de/models/yolol1l/, 2025. Accessed: 2025-09-21.

https://github.com/mowito/ros2_leg_detector
https://github.com/ollama/ollama
https://github.com/ollama/ollama
https://github.com/snakers4/silero-vad
https://github.com/snakers4/silero-vad
https://github.com/absadiki/pywhispercpp
https://github.com/absadiki/pywhispercpp
https://github.com/neonbjb/tortoise-tts
https://github.com/neonbjb/tortoise-tts
https://www.postgresql.org
https://github.com/MagicStack/asyncpg
https://docs.ultralytics.com/de/models/yolo11/
https://docs.ultralytics.com/de/models/yolo11/

	Introduction
	Description of the hardware
	Software architecture overview
	Safety Approach
	Movement and Navigation
	Object Manipulation
	Speech Interaction
	Knowledge-base
	Entity Management
	Event Logging
	SLAM Map Integration
	Technical Implementation

	Computer Vision and Perception

	Conclusions and future work

